import numpy as npy()

import numpy as np

菜鸟教程上对于NumPy的教程: NumPy

官方的Reference:NumPy Reference

这里仅整理部分使用到的函数。

Numpy

NumPy Ndarray对象

1
numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

NumPy 创建数组

numpy.zeros

1
2
3
4
5
6
7
8
9
10
11
12
13
14
numpy.zeros(shape, dtype = float, order = 'C')
shape 数组形状
dtype 数据类型,可选
order 'C' 用于 C 的行数组,或者 'F' 用于 FORTRAN 的列数组
x = np.zeros(5)
print(x)
y = np.zeros((5,), dtype = np.int)
print(y)
z = np.zeros((2,2), dtype = [('x', 'i4'), ('y', 'i4')])
print(z)
[0. 0. 0. 0. 0.]
[0 0 0 0 0]
[[(0, 0) (0, 0)]
[(0, 0) (0, 0)]]

numpy.zeros_like

Return an array of zeros with the same shape and type as a given array.

1
2
3
4
5
6
7
8
numpy.zeros_like(a, dtype=None, order='K', subok=True, shape=None)
x = np.arange(6)
x = x.reshape((2, 3))
array([[0, 1, 2],
[3, 4, 5]])
np.zeros_like(x)
array([[0, 0, 0],
[0, 0, 0]])

NumPy 从数据范围创建数组

numpy.arange

1
2
3
4
5
6
7
8
9
np.arange(start, stop, step, dtype)
start 起始值,默认为0
stop 终止值(不包含)
step 步长,默认为1
dtype 返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型。
x = np.arange(5)
[0 1 2 3 4]
x = np.arange(10,20,2)
[10 12 14 16 18]

NumPy 数组操作

numpy.reshape

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
numpy.reshape(arr, newshape, order='C')
arr:要修改形状的数组
newshape:整数或者整数数组,新的形状应当兼容原有形状
order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'k' -- 元素在内存中的出现顺序。

a = np.arange(8)
b = a.reshape(4,2)
print (a)
print (b)

[0 1 2 3 4 5 6 7]
[[0 1]
[2 3]
[4 5]
[6 7]]

numpy.append

输入数组的维度必须匹配否则将生成ValueError。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
numpy.append(arr, values, axis=None)
arr:输入数组
values:要向arr添加的值,需要和arr形状相同(除了要添加的轴)
axis:默认为 None
当axis无定义时,是横向加成,返回总是为一维数组!当axis有定义的时候,分别为01的时候。
当axis有定义的时候,分别为01的时候(列数要相同)。
当axis为1时,数组是加在右边(行数要相同)。

a = np.array([[1,2,3],[4,5,6]])
print (a)
print (np.append(a, [7,8,9]))
print (np.append(a, [[7,8,9]],axis = 0))
print (np.append(a, [[5,5,5],[7,8,9]],axis = 1))


[[1 2 3]
[4 5 6]]
[1 2 3 4 5 6 7 8 9]
[[1 2 3]
[4 5 6]
[7 8 9]]
[[1 2 3 5 5 5]
[4 5 6 7 8 9]]

NumPy 数学函数

numpy.power

1
2
3
4
5
6
numpy.power(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'power'
x1 = np.arange(6)
x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
np.power(x1, x2)
array([[ 0, 1, 8, 27, 16, 5],
[ 0, 1, 8, 27, 16, 5]])

numpy.sqrt

1
2
3
numpy.sqrt(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'sqrt'>
np.sqrt([4, -1, np.inf])
array([ 2., nan, inf])

NumPy 线性代数

numpy.dot

两个数组的点积,即元素对应相乘.

对于两个一维的数组,计算的是这两个数组对应下标元素的乘积和(数学上称之为内积);

对于二维数组,计算的是两个数组的矩阵乘积;

对于多维数组,它的通用计算公式如下,即结果数组中的每个元素都是:数组a的最后一维上的所有元素与数组b的倒数第二位上的所有元素的乘积和: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

1
2
3
4
5
6
numpy.dot(a, b, out=None) 
a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
print(np.dot(a,b))
[[37 40]
[85 92]]

Functional programming

numpy.piecewise

1
2
3
4
5
6
7
8
9
10
numpy.piecewise(x, condlist, funclist, *args, **kw)
|--
|funclist[0](x[condlist[0]])
out = |funclist[1](x[condlist[1]])
|...
|funclist[n2](x[condlist[n2]])
|--
x = np.linspace(-2.5, 2.5, 6)
np.piecewise(x, [x < 0, x >= 0], [-1, 1])
array([-1., -1., -1., 1., 1., 1.])

numpy.vectorize

1
2
3
4
5
6
7
8
9
10
11
12
13
14
numpy.vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None)
def myfunc(a, b):
"Return a-b if a>b, otherwise return a+b"
if a > b:
return a - b
else:
return a + b
vfunc = np.vectorize(myfunc)
vfunc([1, 2, 3, 4], 2)
array([3, 4, 1, 2])
---
ladder_move = np.vectorize(lambda x : env.ladders[x] if x in env.ladders else x)
step = np.piecewise(step, [step > 100, step <= 100], [lambda x : 200 - x, lambda x : x])
step = ladder_move(step)

Logical functions

numpy.all

Test whether all array elements along a given axis evaluate to True(not zero?).

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero.

1
2
3
4
5
6
numpy.all(a, axis=None, out=None, keepdims=<no value>, *, where=<no value>)

np.all([[True,False],[True,True]])
False
np.all([-1, 4, 5])
True

numpy.equal

1
2
3
4
5
6
7
8
9
10
11
numpy.equal(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'equal'>
Return (x1 == x2) element-wise.

np.equal([0, 1, 3], np.arange(3))
array([ True, True, False])

The == operator can be used as a shorthand for np.equal on ndarrays.
a = np.array([2, 4, 6])
b = np.array([2, 4, 2])
a == b
array([ True, True, False])

Random sampling

numpy.random.randint

Return random integers from low (inclusive) to high (exclusive).

1
2
3
4
5
random.randint(low, high=None, size=None, dtype=int)

np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
array([[ 8, 6, 9, 7], # random
[ 1, 16, 9, 12]], dtype=uint8)

numpy.random.shuffle

Modify a sequence in-place by shuffling its contents.

Multi-dimensional arrays are only shuffled along the first axis:

1
2
3
4
5
6
7
random.shuffle(x)
arr = np.arange(9).reshape((3, 3))
np.random.shuffle(arr)
arr
array([[3, 4, 5],
[6, 7, 8],
[0, 1, 2]])

Sorting, searching, and counting

numpy.argmax

Returns the indices of the maximum values along an axis.

1
2
3
4
5
6
7
8
9
10
11
12
numpy.argmax(a, axis=None, out=None)

a = np.arange(6).reshape(2,3) + 10
a
array([[10, 11, 12],
[13, 14, 15]])
np.argmax(a)
5
np.argmax(a, axis=0)
array([1, 1, 1])
np.argmax(a, axis=1)
array([2, 2])